Grade 6 Math Circles
 Week of $20^{\text {th }}$ November
 Matrices - Problem set

1. Given the following matrices, determine if the following operations are possible, and if so, state the resulting dimension of the matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad B=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \quad C=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \quad D=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad E=\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]
$$

(a) 5 A
(b) $B+E^{T}$
(c) $C+2 E$
(d) $-3 A+D^{T}$
(e) $A+4 B$
2. Given the following matrices, compute the following expressions.

$$
A=\left[\begin{array}{ll}
1 & 4 \\
0 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
5 & 10 \\
3 & 1
\end{array}\right] \quad C=\left[\begin{array}{ll}
4 & 1 \\
2 & 1
\end{array}\right]
$$

(a) $5 A-B^{T}$
(b) $3 B+C$
(c) $A+(B-2 C)$
(d) $B-(2 A+C)$
3. In this lesson, we learnt the determinant, an operation that acts on matrices. There exists another, called the Trace. The trace is defined as the sum of the diagonals of a matrix. Say we have a matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\operatorname{Tr}(A)=\operatorname{Tr}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=a+d
$$

Determine the Trace of the following matrices
(a) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 3 & 0 \\ 3 & 1 & 6\end{array}\right]$
(c) $\left[\begin{array}{cc}9 & 4 \\ 1 / 3 & 7 / 6\end{array}\right]$
4. Like we did with the area of a parallelogram, we can also determine the volume of a parallelepiped. Given the three vectors: \vec{u}, \vec{v}, and \vec{w} that make up the sides of the parallelepiped,

the volume of this solid is

$$
\text { Volume }=\left|\operatorname{det}\left[\begin{array}{lll}
\vec{u} & \vec{v} & \vec{w}
\end{array}\right]\right|
$$

The formula for the determinant of a 3×3 matrix is as follows

$$
\operatorname{det}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=a(e i-f h)-b(d i-f g)+c(d h-e g)
$$

Given the following vectors, determine the volume of the corresponding parallelepiped
(a) $\vec{u}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$, and $\vec{w}=\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right]$
(b) $\vec{u}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right], \vec{v}=\left[\begin{array}{c}1 \\ 3 \\ -1 / 2\end{array}\right]$, and $\vec{w}=\left[\begin{array}{c}3 \\ -1 \\ 2\end{array}\right]$
(c) $\vec{u}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right]$, and $\vec{w}=\left[\begin{array}{l}1 \\ 4 \\ 0\end{array}\right]$
5. Find the area of the parallelogram given by the vectors $\vec{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. Explain your answer.
6. We can also multiply two matrices. To perform matrix multiplication, we multiply each element of a row from one matrix by the corresponding element of the column from the other matrix and add the product together. For example, multiplying two 2×2 matrices looks like

$$
\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]
$$

Compute the following matrix multiplications
(a) $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & 3 \\ -1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 0 & 3 \\ 2 & 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 1 \\ 3 & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{lll}3 & 0 & 4 \\ 0 & 5 & 0\end{array}\right]$
*Do you always get a square matrix when you compute matrix multiplication? What is the resultant dimension of two multiplied matrices?
7. Let $\vec{p}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find the resulting vector from rotating \vec{p} by 90° and then reflecting across the line $y=x$. Does the order in which you apply the transformation matter?

